

SIDDARTHA INSTITUTE OF SCIENC AND TECHNOLOGY:PUTTUR (AUTONOMOUS) <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: FLAT(20CS0512)

Course & Branch: B.Tech - CSE

Year &Sem: II-B.Tech & II-Sem

Regulation: R20

1	a	Define relations on	[L1][CO1]	[6M]				
	b	Differences betwee	en DFA and	NFA with e	xamples.		[L4][CO1]	[6M]
2	a	Consider the below finite automata and check whether the strings are						[8M]
		accepted or not						
		States Input Alphabtes						
			(Q)	0	1			
			—>q0	q1	q3			
			q1	q0	q2			
			(q2)	q3	q1			
			q3	q2	q0			
		(i) 0001 (i	i) 1010 (iii)	1001 (iv)	0101			
	b	Compare DFA and	NFA	. ,			[L2][CO1]	[4M]
3	а	Define Melay mac	hine and Mo	ore machine			[L3][CO1]	[4M]
	b	Define alphabets, s	trings, Lang	uages?			[L3][CO1]	[4M]
	с	Design DFA which	h accepts eve	en number o	of 0's and oc	ld number of 0's	[L6][CO2]	[4M]
		over {0, 1}.						
4	a	Analyze and explain	in with exam	ple Chomsk	y Hierarchy	•	[L4][C01]	[4M]
	b	Convert the follow		[L6][CO2]	[8M]			
		—	2)					
5		Convert the follow	ing NFA wit	th & moves to	o NFA with	out a moves by a-	[L3][CO2]	[12M]
č		closure method.						[121,1]
			а	b	6	с		
			\square		2 6			
		Start	→(q)-	(r) <u> </u>	(s)		
			\bigcirc					
6	a	Construct DFA for		[L6][CO2]	[6M]			
				Next	state 1			
			$\rightarrow q^0$	q0,q1	q0			
			q1	q2	q1			
			q 2	a3	q3			
				40	a2			
			q2 (q3)	q3 -	q3 q2			

<u>UNIT –I</u> INTRODUCTION

Course Code: 20CS0512

Cour	se Co	ode: 20CS()512											R20
	b	State what is meant by finite automata and discuss the Applications and [L3][CO1] [Limitations FA.								[6M]				
7	a	Difference between Mealy machine and Moore machine.								[L4][CO1]	[4M]			
	b	Convert the following Mealy machine into its equivalent Moore machine.							[L3][CO2]	[6M]				
		Pr	esent		I/P=	0			I/P=	:1				
		S	tate	Next St	ate	<u> </u>	P	Ne	ext State	0/P				
		\rightarrow	Ą	С	luie	0	1	B		0				
			3	A		1			D					
		(5	В		1			A	1				
)	D		1			С	0				
	c	Construc	t Mealy	machine	corr	espor	nding to	o Mo	oore mach	nine?			[L3][CO2]	[2M]
			5	States		Next	States			٦				
				(Q)	1/1	P=0	I/P=1	L	Output					
				≽q1	C	μ 1	q2		0					
				q 2	0	μ 1	q3		0					
				q 3	0	μ 1	q 3		1					
8	a	Describe	Finite A	utomata	with	n Outp	out.						[L2][CO1]	[6M]
	b	Write why minimization of finite automata is required and explain the					the	[L6][CO1]	[6M]					
		procedure	e adapte	ed for m	1n1m	1zatio	n of fii	nite	automata	a in Tab	ole fil	llıng		
9		Minimize	e the foll	lowing a	utom	nata							[L3][CO2]	[12M]
				\frown					L	0, 1				
				1			0		K	0				
10		Write down procedure for minimizing automata using Myhill- Nerode theorem with a given example. ('*' means final states) [L3][CO2]							[L3][CO2]	[12M]				
		Next State												
			Presen	t State		I/P	=a		I/P=t)				
			$\rightarrow A$	<u>\</u>		B		_	<u> </u>					
			E ()		A G	<u>.</u>		<u> </u>		-			
			C)		H	[_†	B					
			E	3		А			G					
			*]	F 	+	<u>H</u>	<u> </u>	-			-			
			*]	H		A	L	+	<u> </u>		-			
									L					

<u>UNIT –II</u> <u>REGULAR LANGUAGES</u>

R20

1	a	List out the identities of Regular expression.	[L1][CO3]	[6M]
	b	From the identities of RE, prove that	[L3][CO3]	[6M]
		i) 10+(1010)*[^+(1010)*]=10+(1010)*		
		ii) $(1+100^*)+(1+100^*)(0+10^*)(0+10^*)=10^*(0+10^*)^*$		F 43 63
2	a	Prove R=Q+RP has unique solution, R=QP*	[L3][CO3]	[4M]
	b	Construct RE from given FA by using Arden's Theorem.	[L6][CO3]	[8M]
		$\dot{\Box}$		
		\rightarrow $\alpha 0$ $\alpha 1$ 1 $\alpha 2$		
		1 0		
		a a a a a a a a a a a a a a a a a a a		
3	а	Construct the regular expression for the following FA.	[L6][CO3]	[6M]
		b		
		b (q ₃)		
		b a		
		a		
	1.	Construct on acquirement EA for the since member	[] 2][(0)]	
	D	Construct an equivalent FA for the given regular expression $(0+1)*(00+11)(0+1)*$	[L3][C02]	[ON]
4		Explain about Arden's theorem, for constructing the RE from a FA with	[L6][CO3]	[12M]
		an example.		
		$\rightarrow (q_0) \xrightarrow{0} (q_1) \xrightarrow{0} (q_2)$		
		1		
5		Write the process of equivalence two FA's? Compare the equivalence	[L4][CO3]	[12M]
		two FA's or not.		
		c d c		
		d d		
		d d d c c		
			H 11000	E 43 63
6	a h	Define Regular expressions. List its Applications.		[4M]
	U	equivalent.	լեңյլանյ	
		L1 = 1*(011)*(1*(011)*)*L2 = (1+011)*		

Course Code: 20CS0512

R20

7	a	Convert the given RG to FA	[L3][CO3]	[6M]
		S →aA/bB/a/b		
		A→aS/bB/b		
		B→aA/bS		
	b	Construct an equivalent FA for the given regular expression	[L6][CO2]	[6M]
		10 + (0 + 11)0*1		
8	a	State Pumping lemma for regular languages .	[L1][CO3]	[4M]
	b	Prove that $L = \{a^i b^i \mid i \ge 0\}$ is not regular	[L3][CO3]	[8M]
9	a	Prove that the language $L = \{a^n b^n n \ge 1\}$ is not regular using pumping	[L3][CO3]	[8M]
		lemma.		
	b	What are the applications of Pumping Lemma?	[L1][CO3]	[4M]
10	a	Give the Closure properties of Regular Sets	[L1][CO2]	[6M]
	b	Explain how equivalence between two FA is verified with example.	[L2][CO2]	[6M]

<u>UNIT –III</u> CONTEXT FREE GRAMMAR

R20

1	a	State what is meant by derivation and parse tree with examples.	[L1][CO4]	[4M]
	b	Construct Leftmost and Rightmost derivation and derivation tree for	[L6][CO4]	[8M]
		the string 0100110		
		S→0S/1AA		
		$A \rightarrow 0/1 A/0B$		
		B→1/0BB		
2	а	Define Ambiguous grammar with an examples.	[L1][CO4]	[4M]
	b	Remove Left recursion from the grammar	[L3][CO4]	[8M]
		S→Sab/T		
		T→Tcd/F		
		F→Fa/G		
3	a	Explain Left recursion and Left factoring.	[L2][CO4]	[6M]
	b	Perform left factor for the grammar $A \rightarrow abB/aB/cdg/cdeB/cdfB$	[L3][CO4]	[6M]
4	a	Describe what is meant by Simplifying the Grammar.	[L2][CO4]	[4M]
	b	Evaluate simplification of the grammar for the following context free	[L5][CO4]	[8M]
		grammar.		
		$S \rightarrow Aa/B$		
		$B \rightarrow a/bc$		
		$C \rightarrow a/\epsilon$		[4) (1
5	a 1	Write the process adapted to convert the grammar into CNF?	[L2][C04]	[4M]
	b	Convert the following grammar into CNF.	[L3][CO4]	[8M]
		$S \rightarrow DA/aB$		
		$A \rightarrow D D / b S / a$		
6	9	Define Greibach Normal Form	[I_1][CO4]	[2 M]
0	a h	Convert the following grammar into Greibach Normal Form		[2101]
	U	Convert the following grammar into Greibach Normar Form.		
7	0	A755/b		ro M 1
/	a	i) Useless symbol		[8]/1]
		i) Oseless symbol ii) Null production		
		ii) Unit productions		
	b	List the closure properties of CFLs	[L1][CO4]	[4 M]
8	-	Interpret simplification of the given grammar. Simplify the following	[L5][CO4]	[12M]
		CFG	[][]	
		$S \rightarrow aSb S \rightarrow AA \rightarrow cAd A \rightarrow cd$		
9	а	Remove the unit production from the grammar	[L3][C04]	[6M]
	u	$S \rightarrow AB A \rightarrow E B \rightarrow CC \rightarrow DD \rightarrow b E \rightarrow a$		[01.1]
	h	Remove ϵ productons from the grammar	[L3][C04]	[6M]
		$S \rightarrow ABaC A \rightarrow BC B \rightarrow b/\epsilon C \rightarrow D/\epsilon D \rightarrow d$		[01,1]
10	2	State Pumping lemma for Context-free language	[I_1][CO4]	[4 M]
10	u h	Show that $I = \{a^n b^n c^n where n > -1\}$ is not contact free		[***] [8M]
1	υ	Show that $L = \{a \cup c, where n \ge -1\}$ is not context free.	լեንլԸՕ4]	

<u>UNIT –IV</u> <u>PUSH DOWN AUTOMATA</u>

1	_	State the former 1 of DDA	II 11[CO5]	E 4 N /E 1
1	a	State the formal of PDA.	[L1][C05]	[4M]
	b	Construct a PDA which recognizes all strings that contain equal number	[L6][CO5]	[8M]
		of 0's and 1's.		500
2	a	Describe Instantaneous description (ID) in PDA.	[L2][CO5]	[6M]
	b	Define push down automata? Explain acceptance of PDA with	[L2][CO5]	[6M]
		final state.		
3	a	Explain about the graphical notation of PDA.	[L5][CO5]	[6M]
	b	Explain acceptance of PDA with empty stack.	[L5][CO5]	[6M]
4	a	Construct an equivalent PDA for the following CFG.	[L6][CO5]	[6M]
		S→aAB bBA		
		A→bS a		
		$B \rightarrow aS \mid b.$		
	b	Describe acceptance of PDA.	[L6][CO5]	[6M]
5		Construct a PDA to accept the language $L = \{a^n b^{2n}, n \ge 1\}$ by empty	[L6][CO5]	[12M]
		stack and final state.		
6		Construct PDA from the following Grammar.	[L6][CO5]	[6+6M]
		(i) S→aBB→bA/bA→aB		
		(ii) $S \rightarrow 0BB B \rightarrow 0S / 1S / 0$		
7		Design a DPDA to accept the language $L=\{WCW^R / W \in (a,b)^+\}$ by	[L6][CO5]	[12M]
		empty stack and final state.		
8		Write the process adapted and convert the given PDA into an	[L3][CO5]	[12M]
		equivalent CFG.		
		$\delta\left(q_{0},a_{0},z_{0}\right) \rightarrow \left(q_{1},z_{1}z_{0}\right)$		
		$\delta(\mathbf{q}_0, \mathbf{b}, \mathbf{z}_0) \boldsymbol{\rightarrow} (\mathbf{q}_1, \mathbf{z}_2 \mathbf{z}_0)$		
		$\delta(\mathbf{q}_1, \mathbf{a}, \mathbf{z}_1) \boldsymbol{\rightarrow} (\mathbf{q}_1, \mathbf{z}_1 \mathbf{z}_1)$		
		$\delta(q_1, b, z_1) \rightarrow (q_1, \lambda)$		
		$\delta(\mathbf{q}_1, \mathbf{b}, \mathbf{z}_2) \boldsymbol{\rightarrow} (\mathbf{q}_1, \mathbf{z}_2 \mathbf{z}_2)$		
		$\delta(q_1, a, z_2) \rightarrow (q_1, \lambda)$		
		$\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) //$ accepted by the empty stack.		
9		Construct a PDA that recognizes balanced parentheses.	[L6][CO5]	[12M]
10	a	State NPDA.	[L1][CO5]	[2M]
	b	Construct a NPDA to accept the language $L=\{WW^R / W \in (a,b)^*\}$ by	[L6][CO5]	[10M]
		empty stack and final state.		

1	9	State Turing m		[I_1][CO6]	[2M]		
1	a	State Turing III	actime.				
	b	Construct a Tu	$L = \{a^n b^n, n > 1\}.$	[L6][CO6]	[10M]		
		Show an ID for					
2	а	Explain about	the graphical notation	of TM.		[L3][CO6]	[6M]
	b	Describe Instar	ntaneous Description of	of Turing Machine.		[L2][CO6]	[6M]
3		Construct a Tu	ring machine which m	nultiplies two unary nu	mbers.	[L6][CO6]	[12M]
4		Design a Turin	g Machine to accept t	he set of all palindrom	ne over $\{0,1\}^*$.	[L6][CO6]	[12M]
		Draw the trans	ition diagram for the s	same.			
5	а	Explain the pro	ocedure adapted to cor	overt RE to TM.		[L2][CO6]	[6M]
	b	Convert the give	ven regular Expression	n (a+b)*(aa+bb)(a+b)*	to TM	[L3][CO6]	[6M]
6		Explain the var	rious types of Turing r	machine.		[L2][CO6]	[12M]
7	a	Discriminate U	Iniversal Turing mach	ine.		[L5][CO6]	[6M]
	b	Constructa TM	[L6][CO6]	[6M]			
8	a	Differentiate P	[L4][CO6]	[4M]			
	b	Find the PCP s	olution for the followi	ing sets.		[L5][CO6]	[8M]
			А	В			
			10	101			
			01 100				
			0	10			
			100	0			
9	a	Define PCP. V	erify whether the follo	owing lists have a PCP	solution.	[L5][CO6]	[6M]
		($\begin{pmatrix} abab\\ babaaa \end{pmatrix}, \begin{pmatrix} aaabbb\\ bb \end{pmatrix}, \begin{pmatrix} abb\\ bb \end{pmatrix}$	$(ab)_{ab}, (ba)_{baa}, (ab)_{ba}, (aa)_{ab}, (aa)_{ab$			
		·u.		the bun bur u			
	b	Illustrate Linea	r Bounded Automata			[L2][CO6]	[6M]
10		Define Mather	natical Definition of 7	Turing Machine. Desc	ribe Recursive	[L2][C06]	[12M]
		and Recursivel			[]		